Tsunami wave loading on coastal houses: a model approach

The Asian tsunami of 26 December 2004 killed over 220,000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new 'tsunami-resistant' design developed in the USA and now built in Sri Lanka. Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it, but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.

by wind on the tower and those created by the vertical lift of the tower. Prior to its use on site, the control logic of this custom-written jacking software had been tested and refined using a small-scale test rig.

Both optical and global positioning system surveying were used to ensure verticality of the tower during the lift. In general, the top of the tower was maintained within 25 mm of plumb throughout the erection.

A system of regional weather forecasting and local wind measurement was implemented during the jacking cycles. The erection procedure had various wind limits placed on it, but, in the case of the most severe weather being predicted, the tower was to be lowered onto its foundation and supported on multiple interconnected jacks, which formed a hydraulic plinth at the base. In this situation a second set of guy cables were to be tensioned to provide the mast with additional strength and stiffness. As well as eliminating non-uniform compression stresses in the mast, the temporary hydraulic plinth also served as a damper to absorb energy from wind-induced oscillations in the mast.

The mast lifted progressively, a cycle of mast-jacking during the day was followed by the preparation of the next mast section during the night shift. All five mast lifts were completed without incident and accomplished while airport operations continued uninterrupted around the site.

Cabs fit-out and base building

Once the mast erection was complete, the project immediately progressed to the erection and fit-out of the three-storey base building and the connection of services between base building and cab. Once this was complete, the temporary guy cables were removed and the permanent 150 mm diameter locked-cable cables were installed from a crane and tensioned during a series of night-time operations.

The head anchorage to the mast were designed as giant hooks into which the anchorage pins engaged—this avoided the need for difficult high-precision alignment of the cable anchorage plates to allow the 0.5 t pin to be inserted.

The final installations and commissioning to the tower included the tuning of the hybrid mass dampers to suit the final as-built natural frequency of the tower. Also installed was the 100 m pedestrian bridge linking from the control tower base building to the end of the Terminal 3 pier 7. Each section of the glazed bridge was prefabricated in 30 m lengths and brought directly to the tower site and rapidly craned into place during night-time operations.

In March 2006 the tower was handed over to NATS for fit-out of the air-traffic control systems, after which extensive staff training was completed—not only to familiarise the controllers with the new control systems but also to acquaint the staff to control of the airport from a completely new viewpoint.

The tower were 'live' in February 2007 (Fig. 18) when full airport operations transferred and the old tower was closed after 52 years of service.

Conclusion

The architectural and engineering form of Heathrow's new air-traffic control tower is in part dictated by the unique operational requirements and construction demands of this unusual site at the heart of Heathrow's airspace operations. The fact that it has satisfied the demands of the air-traffic controllers and was constructed without accident and without disruption to the daily operation of the airport is testament to the highly integrated design and construction philosophy established at T5.

References

What do you think?

Feedback

If you would like to comment on this paper please send it to the editor at ce@ice.org.uk

You can also write a letter of 250 or 1500 words about your own experiences of civil or structural design on building. What do you think is the happy medium for the construction industry? Please send your comments to ce@ice.org.uk

Fig. 18: Computer tower with permanent guy cables, three-storey base building and 100 m pedestrian bridge in frame — in the new tower that in February 2007.

S. P. Sivarajah

is an engineering lecturer at the University of Cambridge

Vijayakumar C. Thayaparan

is an engineering lecturer at the University of Cambridge

P. Sivapal

is a geotechnical engineering reader at the University of Cambridge

Proceedings of ICE

Civil Engineering 161 May 2008
Pages 77-86
Paper 07-00327
doi:10.1680/ice.2008.161.2.77

Keywords

buildings, structures & design; hydraulics & hydrodynamics models (physical)
Review of the literature

There is a significant body of research on the wave impact loading on vertical walls. While some can give some guidance on the magnitude of tsunami wave loading on coastal houses, the three-dimensional nature of house structures and the propagation of a tsunami wave around and through houses makes wave impact very different. A recent study [8] by the Asian tsunami has shown the severe damage that tsunami loading can inflict on various structures. [9, 10]

A preliminary design method proposed by Okada et al. [11] for tsunami wave loading considers both the static and dynamic loads: the force per unit length of the wall is taken as an equivalent hydrostatic load with three times the inundation depth, H, for a tsunami wave with no break-up (Fig. 1a). This leads to a resultant force equal to nine times the hydrostatic force of inundation depth H. In the case of wave break-up, an additional triangular pressure distribution to a height of 0.5H with base pressure of 2 gpd (gpd is the density of water and g is the gravity constant) is superimposed (Fig. 1b). This leads to an equivalent force of around 11 times the hydrostatic force of inundation depth H. If the height of the building is less than 3H, then the pressure distribution is truncated at the height of the building. The US Army's coastal engineering research center's technical notes provides guidance on wave force on a shoreward vertical wall. This guidance is based on the work of Gross and Carnfield [12]. The tsunami wave force per unit length of the wall is given as a sum of hydrostatic force and dynamic force. It was shown that, for most cases, the tsunami wave force is 4.5 gpd. This is in line with the Japanese design method as it is nine times the hydrostatic force of inundation depth H.

The US Federal Emergency Management Agency's (FEMA) coastal construction manual provides the total wave load on a vertical wall (height ≤ 2H) of a coastal residential building to be about 11 times the hydrostatic force with inundation depth H. Another way to consider the tsunami wave loading is to consider it as consisting of three components: hydrostatic, hydrodynamic, and impact loading. An important part of the hydrodynamic loading depends on the drag coefficient Cd, which varies between 1.25 and 2.1. FEMA recommends a drag coefficient of 1.25 for width-to-inundation depth ratios of 1 to 1.2. If the wave is taken to be normal to the house wall, hydrodynamic loading per unit length of the wall can be shown to be five times that of the hydrostatic force. Impact loading can be shown to be a function of the impact coefficient Ci. It can be deduced from the work of Nakanuma [13] that Ci depends on the angle of wave front at impact, and its value is typically between 1.7 and 5 as bore angles vary from 25° to 45°. The impact force based on the above values of Ci can be shown to be 12 times that of the hydrostatic force.

In conclusion, the literature review suggests that the overall loading per unit width can be as high as 18 times the hydrostatic force. However, this is an upper limit and the actual value may be lower. More research is needed to understand the impact loading on houses as the past research has concentrated on vertical walls without openings such as doors or windows.

Consideration of similarity

Model testing requires similarity between the model and the prototype. Similarity means that all relevant dimensionless parameters should have the same values for the model and the prototype. Similarity generally includes three basic classifications in fluid mechanics: geometric similarity, kinematic similarity, and dynamic similarity. Model testing of wave propagation and wave impact is a complex problem as identified and investigated by various researchers. The relevant parameters for the model testing in this paper are given in Table 1.

There are eight variables and three dimensions, so, according to Buckingham's theorem, these give at least five non-dimensional groups such as Reynolds's number (Re), Froude number (Fr), drag coefficient, and two non-dimensional length parameters. Re and Fr are the ratio of the inertia force on an element of fluid to the weight of the fluid element. If viscous and inertial forces are to be similar, Re of the model and the prototype must be equal. If the inertial forces and the gravitational forces are to be similar, then Fr of the model and the prototype must be the same. If water is used in the model testing, it is not possible to keep both Fr and Re the same between the model and the prototype. This is because keeping Re the same requires (V/L)model = (V/L)prototype, but keeping Fr the same requires (V/L)model = (V/L)prototype. The same problem is faced when ship drag is studied in model testing. In a similar analogy to ship drag, the wave loading on the building can be thought of arising from three sources: the skin-friction drag, wave drag, and the pressure drag. Re determines the skin-friction drag and Fr determines the wave drag while the pressure drag is reasonably independent. Since skin-friction drag is thought to be minimum for wave loading on a building, Re can be ignored and the scaling can be based on Fr. This suggests that the model velocity must be a fifth of the velocity obtained if the field at full scale. Consequently, the pressure felt by the model structures will be 1/25th of the pressures felt by the structures in the field. The scaling factors will be used while interpreting the experimental results described below.

Experimental work

Creating a tsunami wave in laboratory conditions

Tsunamis are caused by sudden displacement of a large body of water as a result of landslides or earthquakes. The origin of a tsunami wave due to earth quake is a sudden displacement of the seabed, displacing the water above and causing a wave pulse. The tsunami wave then travels in shallow water with a speed of Vg, where g is the gravity constant and f is the water depth.

Creating a tsunami wave under laboratory conditions requires a large wave tank and a sudden displacement of water. Even then, it is difficult to model a tsunami wave accurately under laboratory conditions as a typical tsunami wave has long wavelength and period. The wave tank used in this research was 4.5 m long, 1.5 m deep and 1 m wide (Fig. 2). The base of the tank was filled with sand and profiled with slope angle of 15°. The bed was instrumented with pore-pressure transducers.

The model tsunami wave was created by dropping a rectangular block (mass around 100 kg) into the water at the deepest end of the tank. The sudden displacement of water in the deep end of the tank created a wave that propagated to the shore where the model houses were placed. The wave height was approximately 100 mm and the wave period was 1.5 s. The breaking waves were all 'shaving' type breakers.

Building model houses

The concept of the tsunami-resistant house design is based on decreasing the wave loading on the structure by allowing part of the wave to pass through the house. Thus the middle section of the house is made of partitions that can be easily displaced by the passage of water. The detailed design of the house is given in Chen et al. [4]. A 1:25 scale model of the house was built using a timber plan for the base and glued timber strips for walls.

Table 1: Variables relevant for dimensional analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave loading on the building</td>
<td>W</td>
<td>MLT⁻¹</td>
</tr>
<tr>
<td>Density of water</td>
<td>ρ</td>
<td>M⁻³</td>
</tr>
<tr>
<td>Wave velocity</td>
<td>V</td>
<td>L₉T⁻¹</td>
</tr>
<tr>
<td>Building length (length in contact with water)</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Height of the wall</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Frontal area of the house</td>
<td>A</td>
<td>L²</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>L₉T⁻²</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>μ</td>
<td>ML⁻¹T⁻¹</td>
</tr>
</tbody>
</table>

Fig. 1: The tsunami design method assumes tsunami wave pressure is equivalent to flood from the property for an tsunami same (a), or seven times if the wave height is 1.5 times (b).

Fig. 2: Layout of the 1:25 scale tsunami test, showing location of the two pore-pressure transducers in the bed and three pressure sensors on the model houses (a) and (b) and (c) showing frontal view with raised foundation.

87 | PROCEEDINGS OF THE INSTITUTE OF CIVIL ENGINEERS - CIVIL ENGINEERING 2006 141, No 2 CEI | ISSN 0956-8499 X
Fig. 5 shows the model before and after addition of the roof structure (but prior to fixing doors and roof cladding). The foundations were modelled by attaching bolts to the wooden base. The base area was 200 mm x 300 mm and total weight was 3.4 kg, of which 2.7 kg was in the roof structure. The base of the house was elevated by 20 mm to allow passage of water between the ground and the house.

A scale model of a typical coastal Sri Lankan house was also built (Fig. 4). The walls of the model coastal house were built using model-scale bricks and mortar paste, and the roof was clad with small slates. Total weight was 1.7 kg and the base area was 200 mm x 200 mm.

It should be noted that the joint strength (glue and mortar) in the model houses was not modelled according to scaling laws. As such, the model houses were much stiffer than reality and would therefore attract more wave loading.

This was considered acceptable for this study as the main aim was to understand the maximum wave loading on different house designs irrespective of material strengths.

Testing procedure

Pressure sensors were attached to the model houses, which were then placed on the shore in the tank (Fig. 5). The location of the sensors and the dimensions of the houses are shown in Fig. 6. The rectangular block was then dropped into the water, creating a single wave that travelled towards the shore and impacted on the model house. The passage of the wave was captured by a high-speed video camera and pore pressure and pressure sensor data were recorded at 1 kHz.

Table 2 summarises the tests carried out. The first test was carried out without the model house to use as a control experiment. In test 2, the tsunami-resistant house was tested first with the roof off, in order to observe wave reflections from walls and wave passage through the house, and then with the roof on. The typical coastal house was then tested without and then with a proper foundation. The complete tsunami-resistant house was finally tested again.

Results

Pore-pressure measurements

Pore pressure measurements recorded during test 3 are shown in Fig. 7, which clearly shows the propagation of the tsunami wave. Fig. 8 summarises the excess pore pressures from all the tests. The increase in wave height is manifested as an increase in water pressure at the slope bed. The excess pore pressure experienced along the bed slope increases from about 0.8 kPa in transducer 1 to about 1.1 kPa in transducer 3, corresponding to an increase in wave height from about 80 mm to 110 mm. The excess pore pressure in transducer 4 is slightly reduced to around 1 kPa as the wave breaks onshore. Transducer 5, which is located about 50 mm below the model house, also recorded excess pore pressure in the range of 0.5-0.6 kPa.

The average wave velocity was calculated by dividing the horizontal distance between the transducers by the time lag in excess pore pressures. Fig. 9 shows the wave speeds from all the tests. The initial wave speeds obtained in the tests are reasonably close to the theoretical prediction of 2.2 m/s for a water depth of 0.5 m. As expected, the wave speed decreased as it travelled along the slope while the wave height increased. In all the tests, the wave speed just before reaching the model house was about 1 m/s.

the main aim was to understand the maximum wave loading on different house designs irrespective of material strengths

Fig. 7. Typical pore pressure measurements by the five transducers clearly show the propagation of the wave

Fig. 8. Summary of excess pore pressures recorded by the five transducers during the six tests

Fig. 9. Summary of wave speeds derived from pressure peaks, show gradual deceleration

Table 2. Summary of the six model tests

<table>
<thead>
<tr>
<th>Test number</th>
<th>Description</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>House only</td>
<td>Control experiment</td>
</tr>
<tr>
<td>2</td>
<td>Tsunami-resistant design without roof</td>
<td>House performed well</td>
</tr>
<tr>
<td>3</td>
<td>Tsunami-resistant design with roof</td>
<td>House and roof performed well</td>
</tr>
<tr>
<td>4</td>
<td>Typical coastal house without proper foundation</td>
<td>Roof was destroyed and the house disintegrated and tilted</td>
</tr>
<tr>
<td>5</td>
<td>Typical coastal house with proper foundation</td>
<td>Roof was destroyed but the house was intact</td>
</tr>
<tr>
<td>6</td>
<td>Tsunami-resistant design with roof</td>
<td>House and roof performed well</td>
</tr>
</tbody>
</table>
High-speed video capture
A high-speed video camera was used to capture the passage of the tsunami wave in the experiments. A frame rate of 5000 fps was used to capture 2 s of video footage, starting from just prior to the wave reaching the model houses. Fig. 10 shows eight clips obtained from video footage of tests 2, 3, and 4. Clips were extracted from the video footage every 60 frames so the time lag between each clip is 0-12 s. The top row shows results from test 4 (typical coastal house without proper foundation), the middle shows test 2 (tsunami-resistant design without roof) and the bottom row shows test 3 (tsunami-resistant design with roof). It is clear from the clips that the breaking waves in these tests were surge breakers.

As the wave impacts on the typical coastal house, water is splashed and curved upwards, as can be seen from Fig. 10. The corresponding clips for the tsunami-resistant house show minimal water splash as water passes through the house and below the base of the house. The roof of the model coastal house was lifted off and carried away in the flow, destroying the roof and its slate cladding. The water splash from the typical coastal house reached almost twice the height of the building, whereas it is much smaller for the tsunami-resistant house.

This alone suggests that the force on the wall of the tsunami-resistant house would be less than that for the model coastal house. This is proved by the readings from pressure sensors 1 and 2 in Fig. 11.

Wave loading on house.
Wave loading on the front and back walls of the model houses was measured by three pressure sensors as shown in Fig. 4. Pressure sensors 1 and 2 were positioned on the front wall about 20 mm and 80 mm from the base of the house, respectively. Sensor 3 was attached to the rear wall at about 20 mm from the base. The prototype interpretation of the wave loading in this paper is based on Proudre scaling as discussed previously.

The pressure sensor readings from the walls of tsunami-resistant house in test 3 are given in Fig. 11(a). Pressure sensors 1 and 2, which were positioned on the front wall, recorded maximum pressure of 5-7 kPa and 4-5 kPa, respectively. The average of peak pressure in sensors 1 and 2 can be taken as the peak pressure on the front wall, 5-1 kPa. Thus the horizontal force on the front wall can be calculated by multiplying this pressure by frontal area. Sensor 3, which was on the rear wall, started to record after a time lag of 0-6 s and it showed a maximum pressure of 3-9 kPa. This is expected, as the wave needs to travel the length of the house before applying pressure on the back wall. The pressure record of sensor 3 shows two distinct peaks, the first due to the initial wave and the second possibly due to the reflecting wave from the wave tank. As a first estimate, ignoring the frictional forces on the side-walls of the house by the wave, the resultant horizontal force on the house at any instant can be obtained by subtracting the force on the rear wall from the force on the front wall. It is clear from Fig. 11(a) that the maximum resultant horizontal force on the house would occur during the initial impact (5-5-6 s) as there is no pressure on the rear walls during this time. The maximum pressure on the front wall of the house is 5-1 kPa. This corresponds based on Proudre scaling—to 127-5 kPa (51 x 25) for a full-sized house with a tsunami wave velocity of 5 m/s (1-5).

Figure 11(b) shows the sensor readings from the walls of the typical coastal house in test 4. Sensors 1 and 2 recorded maximum pressures of 6-9 kPa and 5-7 kPa, respectively. Therefore, the average pressure experienced by the front wall is 6-5 kPa, which corresponds to 157-5 kPa (6-5 x 25) for a full-sized house. The pressure experienced by the typical coastal house is slightly higher than that of tsunami-resistant house, even though the waves have the same characteristics, mainly because the latter is located 20 mm above ground due to its elevated foundation. Therefore, the absolute elevation of the pressure sensors in tsunami-resistant house is 20 mm higher than the corresponding sensors in the coastal house. Part of the wave is allowed to travel through the gap between the tsunami-resistant house base and the ground, and 58% of the top part of the wave is also allowed to travel through the house. The tsunami-resistant house experiences lesser impact force.

The tsunami-resistant house performed well under the wave loading whereas the coastal house was damaged severely. The roof of the coastal house was forced off by splashing water from the wave and the house as a whole was translated and tilted by the wave force. When a coastal house with a proper foundation was assessed in test 3, it performed much better than the house in test 4. Only the roof of the house was damaged by the wave.
Figures 12(a) and 13(a) show the pressure readings from sensors 1 and 2 during the initial impact of the wave in tests 3 and 4, respectively. Figs 12(b) and 13(b) show corresponding pressure distributions on the house walls. The pressure readings vary from 1-5 kPa with wave heights in the range 50-80 mm. Hattori et al. also performed similar experiments and reported peak pressures around 5 kPa for wave height of 70 mm with wave velocity of 2 m/s. The pressure profiles obtained from Froude-law scaling of small-scale fresh-water models tend to overestimate the magnitude of impact pressures likely to occur in field cases with sea water. Two main reasons for this discrepancy are the aeration level in water and air entrainment. Aeration levels are higher in sea water than in fresh water, so impact pressures from sea water are less. Bullock et al. have shown, using wave-tank tests with wave height of 207 mm, the difference is about 10%. Impact pressure is also governed by the air entrainment. Hattori et al. and Wood et al. have shown that a small amount of air entrapped between the breaking wave and the wall increases the impact pressure considerably. Therefore, more research is required before impact pressures on houses obtained from model tests can be confidently interpreted to prototype scale. Nevertheless, the prototype interpretation of the present study indicates that a tsunami wave with velocity of 5 m/s (1 x 5) can induce a maximum loading of 375 kN (0.6 x 25 x 25) on a typical coastal house with frontal wall height 25 m and width 25 m.

Other factors, which are not focused on in this paper but are important for tsunami-resistant design, include debris impact and scouring of foundation.

Conclusions

Model testing of a new tsunami-resistant house design and a typical Sri Lankan coastal house was carried out in a wave tank to study the effectiveness of the new design and to understand the wave loading on coastal houses. The new design performed well under the tsunami wave loading while the typical coastal house was destroyed.

The first prototype of the tsunami-resistant house was completed in September 2005 in Balapitiya in Sri Lanka. The project was executed by the Pranipaya Foundation and Sri BudhiJnya Foundation in Sri Lanka. It should be noted that practical implications and societal views mean that the final as-built house has a few features different from that of original design. The video footage of the model tests provided a useful insight into the sequence of events that occur as the tsunami wave impacts a house wall, applying uplift force to the roof structure and destroying a typical coastal house design. The following facts were observed in the tests:

- House roofs experience uplift forces due to splashing water that curls upwards after impacting on the wall.
- Houses can slide or overturn if the foundations are not properly designed to account for tsunami wave loading.
- The maximum wave loading on house walls at wave impact was about 10-12 times the hydrostatic force.

Further study is currently underway to investigate the detailed loadings on houses, except some pressures beneath the foundations, scouring effects, scaling effects of model studies and the effectiveness of various other tsunami-resistant designs. Some further details of this research can be obtained from Thirunathan et al.

The new design performed well under the tsunami wave loading while the typical coastal house was destroyed.
Acknowledgements

The authors would like to thank all staff at the Schofield Centre for their help in carrying out the testing. Advice and guidance of Domenico Del Re and Navin Peiris of Risk Management Solutions, London is acknowledged with thanks. The first author would like to thank the Royal Society and Churchill College for its financial support. The work reported also formed a part of the Discovery Channel programme Surviving the killer waves.

References

29. TAKAHASHI S. Design of breakwaters. Port and Harbour Research Institute, Yokosuka, Japan, 1996.

What do you think?

If you would like to comment on this paper, please email us up to 200 words to the editor at journals@ice.org.uk.